
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007 2177

REFERENCES

[1] H. Akcay and B. Ninness, “Orthonormal basis functions for contin-
uous-time systems and Lp convergence,” Math. Contr., Signals Syst.,
vol. 12, no. 3, pp. 295–305, 1999.

[2] J.-M. Biannic, S. Tarbouriech, and D. Farret, “A practical approach to
performance analysis of saturated systems with application to fighter
aircraft flight controllers,” in 5th 1FAC Symp. ROCOND, Toulouse,
France, 2006.

[3] G. Ferreres, A Practical Approach to Robustness Analysis with Aero-
nautical Applications. New York: Springer-Verlag, 1999.

[4] G. Ferreres and G. Puyou, “Flight control law design for a flexible air-
craft: Limits of performance,” J. Guid., Control Dyn., vol. 29, no. 4,
pp. 870–878, 2006.

[5] G. Ferreres and C. Roos, “Robust feedforward design in the presence
of LTI/LTV uncertainties,” Int. J. Robust Nonlinear Control, vol. 17,
no. 14, pp. 1278–1293, Sep. 2007.

[6] A. Giusto and F. Paganini, “Robust synthesis of feedforward compen-
sators,” IEEE Trans. Autom. Control, vol. 44, no. 8, pp. 1578–1582,
1999.

[7] J. M. Gomes da Silva Jr. and S. Tarbouriecb, “Anti-windup design with
guaranteed regions of stability: An LMI-based approach,” IEEE Trans.
Autom. Control, vol. 50, no. 1, pp. 106–111, Jan. 2005.

[8] G. Grimm, J. Hatfield, I. Postlethwaite, A. R. Teel, M. C. Turner, and
L. Zaccarian, “Anti-windup for stable linear systems with input satura-
tion: An LMI-based synthesis,” IEEE Trans. Autom. Control, vol. 48,
no. 9, pp. 1509–1525, Sep. 2003.

[9] T. Hu, A. R. Teel, and L. Zaccarian, “Nonlinear L gain and regional
analysis for linear systems with anti-windup compensation,” Proc.
ACC, pp. 3391–3395, Jun. 2005, Portland, OR, USA.

[10] M. Kothare and M. Morari, “Multiplier theory for stability analysis of
anti-windup control systems,” Automatica, vol. 35, pp. 917–928, 1999.

[11] M. Kothare., P. Campo, M. Morari, and C. Nett, “A unified framework
for the study of anti-windup designs,” Automatica, vol. 30, no. 12, pp.
1869–1883, 1994.

[12] A. Megretski and A. Rantzer, “System analysis via integral quadratic
constraints,” IEEE Trans. Autom. Control, vol. 42, no. 6, pp. 819–830,
Jun. 1997.

[13] E. F. Mulder, M. V. Kothare, and M. Morari, “Multivariable
anti-windup controller synthesis using linear matrix inequalities,”
Automatica, vol. 37, no. 9, pp. 1407–1416, 2001.

[14] R. T. Reichert, “Dynamic scheduling of modern robust control au-
topilot design for missiles,” IEEE Control Syst. Mag., vol. 12, no. 5,
pp. 35–42, Oct. 1992.

[15] K. Sun and A. Packard, “RobustH andH filters for uncertain LFT
systems,” IEEE Trans. Autom. Control, vol. 50, no. 5, pp. 715–720,
2005.

[16] F. Wu and M. Soto, “Extended anti-windup control schemes for LTI
and LFT systems with actuator saturations,” Int. J. Robust Nonlin. Con-
trol, vol. 14, pp. 1255–1281, 2004.

Incremental Value Iteration for Time-Aggregated
Markov-Decision Processes

Tao Sun, Qianchuan Zhao, and Peter B. Luh, Fellow, IEEE

Abstract—A value iteration algorithm for time-aggregated Markov-de-
cision processes (MDPs) is developed to solve problems with large state
spaces. The algorithm is based on a novel approach which solves a time
aggregated MDP by incrementally solving a set of standard MDPs. There-
fore, the algorithm converges under the same assumption as standard value
iteration. Such assumption is much weaker than that required by the ex-
isting time aggregated value iteration algorithm. The algorithms developed
in this paper are also applicable to MDPs with fractional costs.

Index Terms—Fractional cost, Markov-decision processes (MDPs),
policy iteration, time aggregation, value iteration.

I. INTRODUCTION

Markov-decision processes (MDPs) with the average cost criterion
play important roles in the fields such as control, operations research
and artificial intelligence (see, e.g., [1]–[3], and [5]). The major
obstacle of applying MDPs to practical problems is the large state
spaces which may cause MDPs intractable by standard approaches,
i.e., policy iteration and value iteration. Nevertheless, value iteration
generally solves much larger problems than policy iteration which
solves linear equations at each iteration [3]. The recently developed
time aggregation approach [1] results in reduced state spaces. This
may substantially reduce the storage and computational requirements
especially for problems with certain structures, e.g., a large number of
uncontrollable states. For these large problems, a value iteration algo-
rithm with time aggregation is powerful. However, such an algorithm
has not been well developed yet.

The idea of time aggregation is to divide the original process into
segments by certain states (e.g., those controllable states) to form an
embedded (time aggregated) MDP. The performance function is con-
verted accordingly and a policy iteration algorithm was presented in
[1]. However, since the performance function is not explicitly known,
it is generally difficult to perform value iteration. Due to the close sim-
ilarities, the value iteration algorithm presented in [4] for MDPs with
fractional cost is applicable to time aggregated MDPs. However, the
algorithm converges under a strong assumption, i.e., there exists a state
that is admissible with a positive probability from any state under any
action.

This note develops a value iteration algorithm for time aggregated
MDPs to solve problems with large state spaces. In Section II, time-ag-
gregated MDPs are briefly reviewed and their optimal policies are in-
vestigated. A novel approach is developed in Section III to solve an
aggregated MDP by incrementally solving a set of standard MDPs.
This approach directly leads to a new policy iteration algorithm and
helps to develop a value iteration algorithm which is proved to converge

Manuscript received March 9, 2007; revised June 15, 2007. Recommended
by Associate Editor I. Paschalidis. This work was supported by the NSFC under
Grants 60274011 and 60574067, the NCET program (No. NCET-04-0094) of
China, and the National 111 International Collaboration Project.

T. Sun and Q. Zhao are with the Center for Intelligent and Networked Systems
(CFINS), Department of Automation, Tsinghua University, Beijing 100084,
China (e-mail: suntao99@mails.tsinghua.edu.cn; zhaoqc@tsinghua.edu.cn).

P. B. Luh is with the Department of Electrical and Computer Engineering,
University of Connecticut, Storrs, CT 06269-2157 USA and also with CFINS,
Department of Automation, Tsinghua University, Beijing 100084, China
(e-mail: Peter.Luh@uconn.edu).

Digital Object Identifier 10.1109/TAC.2007.908359

0018-9286/$25.00 © 2007 IEEE

2178 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007

in Section IV under ergodicity, an assumption much weaker than that
required by the convergence of the existing algorithm [4]. Numerical
testing is provided in Section V to illustrate the efficiency and effec-
tiveness of our algorithm.

II. THE TIME AGGREGATION APPROACH FOR MDPS

A. Standard MDPs and Time-Aggregated MDPs

We first define a standard MDP, then briefly describe the time ag-
gregated MDP developed by [1]. Most of the following notations are
borrowed from [1]. We consider a discrete-time Markov chain, X =
fXt; t = 0; 1; . . .g, with a finite state–space S = f1; . . . ; jSjg, where
j � j denotes the set cardinality. LetA be a finite set of actions andA(i)
stand for all feasible actions for state i. We consider the set of stationary
policies denoted by E . A policyL 2 E is a mappingL : S ! A. Under
policy L, the action L(i) 2 A(i) taken for state i leads to state transi-
tion probability from i to j described by pL(i)(i; j), j = 1; 2; . . . ; jSj.
In addition, the Markov chain evolves following the transition proba-
bility matrix PL, with [PL]i;j = pL(i)(i; j).

Ergodicity Assumption: The Markov chain is ergodic under any
policy in E .

By ergodicity assumption, �LPL = �L has a unique solution �L =
(�L(1); . . . ; �L(jSj)), with�L(i)being the steady-state probability of
state i under policy L. Let fL = (fL(1); . . . ; fL(jSj))T be a column
vector of performance functions, where “T ” denotes transpose. The
performance of L, represented by the average cost, is well defined and
does not depend on the initial state

�
L = lim

T!1

1

T

T�1

t=0

f
L(Xt) = �

L
f
L
: (1)

The problem is to obtain an optimal policy achieving the minimum
average cost

L� = argmin
L2E

f�Lg: (2)

Let S1 and S2 = S � S1 be two complementary subsets of S . As
in [1], we focus on a subset of MDPs, for which actions can only be
taken for states in S1 and the transition probabilities and performance
functions for states in S2 do not depend on actions. Therefore, fL and
PL can be partitioned according to S1 and S2 as

P
L =

PLS S PLS S

PS S PS S

and f
L =

fLS

fS
: (3)

For a sample path fX0;X1; . . .g generated under L with X0 2 S1,
let t0 = 0 and ti = minftjt > ti�1;Xt 2 S1g, i = 1; 2; Then
fXt ; i = 0; 1; . . .g forms an embedded Markov chain which is also
ergodic. Let ~PL and ~�L be the transition matrix and the steady-state
probability row vector of the embedded chain under L. We have [1]

~PL = P
L
S + P

L
S S (I � PS S)�1 PS S : (4)

Those states in the embedded chain divide the original Markov chain
into segments. For example, a segment generated based on Xt 2 S1
is (Xt ; Xt +1; . . . ; Xt �1). The expected total cost of a segment
starts from i 2 S1 is defined as

H
L
f (i) = E

t �t

j=1

f
L (Xt +j�1) jXt = i : (5)

Let HL
f = [HL

f (1); . . . ; HL
f (jS1j)]

T , which can be computed as [1]

H
L
f = f

L
S + P

L
S S (I � PS S)�1 fS : (6)

For well-structured problems (such as the replacement problem in
Section V), ~PL and HL

f may be directly calculated by their definitions
without performing burdensome matrix computations as (4) and (6).
Use HL

1 to denote the case where fL(i) � 1 for any i 2 S and
L 2 E . The definition (5) shows that HL

1 (i) is the expected length of
the segment starting from i 2 S1. Let Bu and Bl be the upper and
lower bounds of HL

1 (i). Then for any L 2 E

1 � Bl � �nL � Bu; (7)

with

�nL � ~�LHL
1 : (8)

The performance of the original Markov chain computed by (1) can
also be obtained as

�
L =

~�LHL
f

~�LHL
1

: (9)

Therefore, the performance of the original MDP can be considered as
the ratio of two average costs, i.e., ~�LHL

f and ~�LHL
1 (MDPs with

fractional costs [4]). If the performance function of the embedded chain
is set as

~fL =
1

�nL
H
L
f (10)

then the embedded chain has the same average cost as the original
chain, i.e., ~�L ~fL = �L. It looks as if the entire segment is aggregated
onto the embedded point i 2 S1. Thus the embedded chain defined
with performance function is called “time aggregated MDP.”

The time aggregated MDP with performance function (10) cannot be
directly solved. The reason is ~fL(i) depends on actions taken for states
other than i, as can be seen from �nL. To perform policy improvement
over the embedded chain, a performance function is defined in [1] as:

r�(i; a) � Hf(i; a)� �H1(i; a): (11)

In the above, � is a real parameter. When � is set as �L, i.e., the average
cost of the original MDP under policy L, the potential vector ~gL is
computed through solving the Poisson equation [1]

(I � ~PL + e~�L)~gL = r
L

� = H
L
f � �

L
H
L
1 : (12)

Then a new policy L0 can be obtained through the following policy
improvement process:

L0 = argmin
�2E

r
�

�
+ ~P�~gL : (13)

The policy iteration algorithm (Algorithm 1 in [1]) results in an op-
timal policy for the original MDP through iteratively carrying on the
steps (12) and (13). During iterations, � is updated to be the best-so-far
performance of the policies obtained. Therefore, the performance func-
tion (11) is not explicitly known but changes during policy iterations.
This makes it difficult to perform value iteration.

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007 2179

B. Properties of the Policies for the Aggregated MDPs

To distinguish from the original MDP (2), the embedded chain em-
ploys the performance function (11) with a fixed � is called “aggregated
MDP.” Such an aggregated MDP is a standard MDP with state space
S1 and an optimal policy ~��� which is obtained as

~��� = argmin
L2E

f~�Lg; with ~�L = ~�L HL
f � �HL

1 : (14)

Moreover, by (8) and (9)

~�L = (�L � �)�nL: (15)

Notice that ~��� depends on the value of � and may not be optimal for
the original MDP. The properties of ~��� are analyzed as follows.

Theorem 1: Let L� be an optimal policy of the original MDP (2)
and ~��� be an optimal policy for the aggregated MDP (14).

a) If � is chosen in the range � � �L , then �n
~� � �nL , ~�

~� � 0,
and � � �

~� � �L + ~�
~� =Bl.

b) If � is chosen in the range � � �L , then �n
~� � �nL , ~�

~� � 0,
and �

~� � � � �L � ~�
~� =Bl.

Proof: Since L� is optimal for the original MDP, �L � �
~� . By

(15)

~�
~� = �

~� � � �n
~� � �L � � �n

~� : (16)

Since ~��� is optimal for the aggregated MDP, therefore ~�
~� � ~�L , i.e.

~�
~� � �L � � �nL : (17)

Based on (16) and (17)

~�
~�

�nL
� �L � � �

~�
~�

�n
~�
: (18)

If � � �L , then �
~� � �, and ~�

~� � 0 by (16). Thus from (18),
�n
~� � �nL . Furthermore, by (15)

�
~� = � +

~�
~�

�n
~�

� �L +
~�
~�

�n
~�

� �L +
~�
~�

Bl

: (19)

If � � �L , then by (15) and (17), ~�
~� � ~�L � 0 and �L � �

~� �

�. Thus from (18), �n
~� � �nL , and

� = �L �
~�L

�nL
� �L �

~�
~�

�nL
� �L �

~�
~�

Bl

:

From Theorem 1, the following corollary can be obtained.
Corollary 1: An optimal policy ~��� for the aggregated MDP (14) is

also optimal for the original MDP (2) if either of the following condi-
tions holds.

a) � = �L .
b) �n

~� = �nL .
Proof:

a) By b) of Theorem 1, �
~� � � = �L . Thus ~��� is optimal for the

original MDP.
b) When �n

~� = �nL , by (17)�
~� � � � (�L � �)�nL =�n

~� =

�L � �. Therefore, �
~� = �L .

Corollary 1 reveals that the information on the optimal policies of the
original MDP is valuable for the time aggregation approach. In partic-
ular, the aggregated MDP can be directly solved as a standard MDP,
which results in an optimal policy for the original MDP if we have
knowledge either as a) or b).

III. AN INCREMENTAL OPTIMIZATION APPROACH

The information required for Corollary 1 is generally not readily
available. This section develops an incremental optimization approach
to gradually reach the optimal performance and policy for the orig-
inal MDP through solving a series of standard MDPs. This approach
is flexible for developing new algorithms for time aggregated MDPs.
In particular, a new policy iteration algorithm can be directly obtained
by using standard policy iteration to solve those standard MDPs. More
importantly, the approach motivates a new value iteration algorithm in
Section IV through incorporating standard value iteration. The detailed
steps of the approach are presented as follows.

Algorithm 1 (An Incremental Optimization Approach)

1) Initialize �0 2 R1. Set iteration index n = 0, and specify � > 0.
2) Construct an MDP (14) based on the embedded chain and the

performance function (11) defined by �n. Obtain an optimal
policy ~��� for the MDP.

3) Compute ~�
~� by (14). If j~�

~� j � �, let �� = ~��� , and stop.
Otherwise, let

�n+1 = �n + �~�
~� ; with � = 1=Bu:

Set n = n + 1 and return to step 2).

The following theorem shows that Algorithm 1 converges to a policy
whose performance can be quantified.

Theorem 2: Suppose L� is an optimal policy of the original MDP
(2). For the incremental optimization approach, we have the following.

a) j�n+1 � �L j � �j�n � �L j, where � = 1� Bl=Bu.
b) The algorithm terminates in a finite number of iterations.
c) The policy �� satisfies �� � �L + �=Bl.

Proof: If �0 = �L , the algorithm terminates after one iteration
with n = 0. By Corollary 1, �� is optimal for the original chain, i.e.,
�� = �L . When �0 6= �L , the proofs are provided next.

a) By (16) and (17)

Bl � �nL �
~�
~�

�L � �n
� �n

~� � Bu; for �n > �L (20)

and

Bl � �n
~� �

~�
~�

�L � �n
� �nL � Bu; for �n < �L : (21)

Therefore, j�n��L j � j~�
~� =Buj, which implies that �n+1�

�L has the same sign as �n � �L . Then

�n+1 � �L

�n � �L
=

�n � �L + ~�
~� =Bu

�n � �L
= 1�

~�
~�

�L � �n

1

Bu

:

This, together with (20) and (21), leads to
Bl

Bu

�
~�
~�

�L � �n

1

Bu

� 1

0 �
�n+1 � �L

�n � �L�
� 1�

Bl

Bu

: (22)

2180 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007

b) In step 2) of Algorithm 1, the MDP, as pointed out for (14), is
a standard MDP that can be efficiently solved by using existing
algorithms, e.g., policy iteration. When �n < �L , by Theorem
1a) and (17)

0 � ~�
~� � �L � �n �nL :

When �n > �L , by Theorem 1b) and (16)

~�
~� � �L � �n �n

~� :

Thus,

~�
~� � �L � �n Bu: (23)

By a), j�n � �L j decreases geometrically. Thus the stopping
criterion j~�

~� j � �will be met after a finite number of iterations
for any positive number �.

c) When the algorithm terminates, j~�
~� j � �. By Theorem 1,

�� � �L + j~�
~� j=Bl. Thus, �� � �L + �=Bl.

Algorithm 1 is in essence a two-level optimization approach. The
low level is to obtain an optimal policy ~��� in step 2) for a standard
MDP. At the high level, �n incrementally approaches the optimal per-
formance of the original MDP. The geometric convergence of the algo-
rithm provides an estimation on the number of iterations required for
algorithm termination.

IV. INCREMENTAL VALUE ITERATION

For time aggregated MDPs, policy iteration must store matrices with
dimensions jS1j� jS1j to compute steady-state probabilities and solve
Poisson equation at each iteration. In contrast, value iteration does not
perform such computations and may only need to store a jS1j-dimen-
sional vector ĝ. Therefore, value iteration is effective for large problems
with structural features suitable for the time aggregation approach. In-
corporating standard value iteration in step 2) of Algorithm 1, this sec-
tion develops a new value iteration algorithm which converges under
much weaker assumptions than that required by the existing algorithm
in [4]. The detailed steps are presented below.

Algorithm 2 (An Incremental Value Iteration Algorithm)

1) Choose a jS1j-dimensional vector ĝ0 and initialize �0 2 R1. Set
m = n = 0 and specify � > � > 0.

2) For each i 2 S1, compute ĝm+1(i) by

ĝm+1(i) = min
a2A(i)

fHf (i; a)� �nH1(i; a)

+
j2S

~pa(i; j)ĝm(j) : (24)

3) If sp(ĝm+1 � ĝm) � �, where sp(ĝ) is the span of ĝ ([3]):

sp(ĝ) � max
i2S

ĝ(i)� min
i2S

ĝ(i);

go to step 4). Otherwise, set m = m+ 1 and return to step 2).
4) Compute �̂� as

�̂� =
1

2
max
i2S

(ĝm+1(i)�ĝm(i))+min
i2S

(ĝm+1(i)�ĝm(i)) :

If j�̂� j � �, go to step 5). Otherwise, let

�n+1 = �n + ��̂� ; with � = 1=Bu

set n = n + 1, m = m+ 1 and return to step 2).
5) Obtain a policy ��. For any i 2 S1, choose

a� (i) 2 arg min
a2A(i)

fHf(i; a)� �nH1(i; a)

+
j2S

~pa(i; j)ĝm(j) :

This algorithm is guaranteed to converge as summarized in the next
theorem.

Theorem 3: Suppose L� is an optimal policy of the original
MDP (2). For the incremental value iteration algorithm, we have the
following.

a) j�n+1��L j � �j�n��L j, where � = maxf�=(2���); 1�
(Bl=Bu)(1� (�=(2�� �)))g.

b) The algorithm terminates in a finite number of iterations.
c) The policy �� satisfies �� � �L + (�+ 3�=2)=Bl.

Proof:
a) Let ~��� be an optimal policy for the aggregated MDP with per-

formance function (11) defined by �n. The estimation �̂� calcu-
lated in step 4) satisfies (see [3, p. 370])

�̂� � ~�
~� � �=2; and �̂� � ~�� � �=2: (25)

Before the algorithm stops, the criterion in step 4) is not met, i.e.,
j�̂� j > � > �. Therefore, ~�

~� � �=2 � �̂� � ~�
~� + �=2,

and

~�
~� � � �

�

2
: (26)

Thus, �
~� has a same sign with �̂� . In addition

~�
~� 1�

�

2�� �
��̂� � ~�

~� 1 +
�

2�� �
for �̂� >0;

~�
~� 1 +

�

2�� �
��̂� � ~�

~� 1�
�

2�� �
for �̂� <0:

It follows that

1�
�

2�� �
�

�̂�

~�
~�

� 1 +
�

2�� �
:

In view of (22), we obtain

Bl

Bu

1�
�

2�� �
�

�̂�

�L � �n

1

Bu

� 1 +
�

2�� �
:

Since

�n+1 � �L

�n � �L
=

�n � �L + �̂� =Bu

�n � �L
= 1�

�̂�

�L � �n

1

Bu

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007 2181

TABLE I
ALGORITHM COMPARISONS BY THE REPLACEMENT PROBLEM

PI: Policy Iteration in [1].
FVI: Fractional cost Value Iteration in [4] with adjusted parameter and error
tolerance 0.001.
IVI: Incremental Value Iteration; � = 10, error tolerances: � = 0:001,
� = 0:0001.

The total number of iterations after solving four standard MDPs.

it follows that

�
�

2�� �
�
�n+1 � �L

�n � �L
�1�

Bl

Bu

1�
�

2�� �
; and

�n+1 � �L

�n � �L
�max

�

2�� �
; 1�

Bl

Bu

1�
�

2�� �
:

b) For the algorithm, the condition (26) must hold during iterations.
However, j~�

~� j decreases geometrically as j�n � �L j by a)
and (23). Thus the algorithm terminates after a finite number of
iterations. For each of the iterations, steps 2) and 3) are standard
value iteration, which converges under the assumption that all
stationary policies are unichain and that every optimal policy has
an aperiodic transition matrix (see [3, p. 370]). Therefore, the
ergodicity assumption used by time aggregated MDPs and frac-
tional cost MDPs is sufficient to guarantee the convergence of our
algorithm. The assumption is much weaker than that required by
the algorithm in [4]: a state is admissible with a positive proba-
bility from any state under any action. Notice that such a positive
probability is crucial for that algorithm in the aspects of imple-
mentation, convergence and optimality (see [4, eqs. (11), (13),
and (15)], respectively). In contrast, our algorithm has no such
strong requirement.

c) By (25) and the stopping criterion j�̂� j � �; j~�
~� j � � + �=2

and j~�� j � � + �=2. When �n � �L , by (15)

�� = �n +
~��

�n�
� �L +

~��

�n�
� �L +

� + �=2

Bl

: (27)

When �n � �L

�� = �n +
~��

�n�
= �L �

~�L

�nL
+

~��

�n�
:

In step 3), sp(ĝm+1 � ĝm) � � implies ~�� � ~�
~� � � ([3]).

Therefore

�� � �L �
~�
~�

�nL
+

~�
~� + �

�n�
:

By b) of Theorem 1, ~�
~� � 0. Thus

�� � �L �
~�
~�

�nL
+

�

�n�
� �L +

�+ 3�=2

Bl

: (28)

Combining (27) and (28), the conclusion follows.

Fig. 1. � approach � from � = 0, 10 after solving 4 standard MDPs.

V. NUMERICAL TESTING

A multicomponent replacement problem is tested to compare the
storage and computational requirements of the three algorithms, i.e.,
Policy Iteration (PI) [1], Fractional cost Value Iteration (FVI) [4] and
our Incremental Value Iteration (IVI). The problem is sketched as fol-
lows. An asset consists of several components. A component must be
replaced if it expires after running for a predefined lifetime or fails. Re-
placing any component incurs a common setup cost besides new com-
ponent cost. To share the setup cost, those components that are close
to expiration may also be replaced by opportunity. The problem is to
minimize the average cost through proper joint replacement decisions.
Variations of the problem can be found in [2]. The state is the com-
binations of component status (expired, failed or running with certain
remaining lives). For illustration purpose, consider an asset with three
components whose new lifetimes are all 10. The setup cost and the
cost of a component are set as 10. Each component may fail with prob-
ability 0.01 at any time unit. Because of such independencies between
component lifetime and failure rate, replacement decisions only need
to be made for the states (i.e., S1) with component expirations or fail-
ures. Therefore, applying time aggregation approach cuts the number
of states from 1331 to 602. The HL

f (i), i 2 S1, is just the cost at i
because no cost is encountered until next replacement. The ~PL can be
calculated by (4) or directly based on the relations among states. The
three algorithms are tested on Windows, PIV 2.4 GHz, 512 MB RAM
and MATLAB 6.5. The results are presented as Table I and Fig. 1.

Two value iteration algorithms, FVI and IVI, may only store the po-
tential vector ~gL with jS1j elements which are updated (e.g., according
to (24) for IVI) with computational order jAkS1j2 during iterations. In
contrast, policy iteration requires extra storage and computations with
rough orders jS1j2 and jAkS1j2 + jS1j

3, respectively, to compute the
steady-state probabilities and solve the Poisson equation (12) at each it-
eration [1]. For this three-component example, Table I shows that both
value iteration algorithms take less CPU time at each iteration and need
less storage than policy iteration. If the number of compents is larger,
policy iteration would not work. Consider for example a six-compo-
nent problem with new lifetime 10. The policy iteration will become
intractable because jS1j is of the orderO(106), the number of elements
to be stored is of the O(1012) (more than 1 Terabyte if an element re-
quires 4 Bytes memory), and the computation is of the order O(1018).
However, value iteration may still doable because the storage require-
ment is about several Megabytes and the computational burden is also

2182 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 52, NO. 11, NOVEMBER 2007

much less. Similar to algorithms for standard MDPs, value iterations
generally requires more number of iterations to converge as compared
with policy iteration.

For FVI, the replacement problem meets the convergence condition:
a state (three components fail at the same time) is reachable from any
state under any action with a positive probability ranging between 10�6

and 10�5. However, this probability is so small that directly using it to
set the parameter “�” for the algorithm as recommended in [4] leads
unacceptable slow convergence. Therefore, a larger value “0.1” is op-
tionally chosen by us. Such adjusted parameter setting violates the con-
vergence condition (11) in [4] but still leads to an optimal policy after
103 iterations as shown in Table I. This reveals that, on one hand, the
computing load of FVI is affected by the parameter “�” which depends
on both transition probabilities and Bu (see (11) in [4]). On the other
hand, the strong convergence condition needs to be weakened as men-
tioned in [4]. In contrast, our algorithm does not have such difficulties
on parameter selections or convergence requirements. However, our al-
gorithm solves a set of standard MDPs which may bring extra compu-
tational requirements. Fortunately, �n converges fast especially when
Bu and Bl are close as proved in Theorem 2 and 3. This means that
we generally only solve a few numbers of standard MDPs to obtain a
near optimal policy. The results summarized in Table I show that only
four standard MDPs are solved with 19 total number of iterations, i.e.,
n = 4, m = 19 for IVI. The fast converged trajectories of �n are il-
lustrated in Fig. 1.

VI. CONCLUDING REMARKS

Standard algorithms may be intractable to solve an MDP with a large
state space. If the problem possesses structural features such as having
a large number of uncontrollable states, our algorithm performs stan-
dard value iteration on those controllable states based on time aggrega-
tion. Compared to existing algorithms for time aggregated MDPs, our
algorithm requires less storage and computation during iterations than
policy iteration in [1] and converges under a much weaker assumption
than that required by the value iteration algorithm in [4].

Existing algorithms for standard MDPs can be used in step 2) of
the incremental optimization approach. For example, employing the
R-learning algorithm (see, e.g., [5]) will result in a new R-learning al-
gorithm for time aggregated MDPs. All the algorithms developed in
this note for time aggregated MDPs are directly applicable to MDPs
with fractional costs.

REFERENCES

[1] X. R. Cao, Z. Y. Ren, S. Bhatnagar, M. Fu, and S. Marcus, “A time
aggregation approach to Markov decision process,” Automatica, vol.
38, pp. 929–943, 2002.

[2] R. Dekker, R. E. Wildeman, and R. Egmond, “Joint replacement in
an operational planning phase,” European J. Oper. Res., vol. 91, pp.
74–88, 1996.

[3] M. L. Puterman, Markov Decision Process: Discrete Stochastic Dy-
namic Programming. New York: Wiley, 1994.

[4] Z. Ren and B. H. Krogh, “Markov decision processes with fractional
costs,” IEEE Trans. Autom. Control, vol. 50, pp. 646–650, 2005.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

Polynomial Embedding Algorithms for Controllers in a
Behavioral Framework

H. L. Trentelman, Member, IEEE, R. Zavala Yoe, and C. Praagman

Abstract—In this correspondence, we will establish polynomial al-
gorithms for computation of controllers in the behavioral approach to
control, in particular for the computation of controllers that regularly
implement a given desired behavior and for controllers that achieve pole
placement and stabilization by behavioral full interconnection and partial
interconnection. These synthesis problems were studied before in articles
by Belur and Trentelman, Rocha and Wood, and Willems in the reference
section. In the algorithms, we will apply ideas around the unimodular
and stable embedding problems. The algorithms that are presented in this
correspondence can be implemented by means of the Polynomial Toolbox
of Matlab.

Index Terms—Behavioral systems, controller design, regular implemen-
tation, stabilization and pole placement, unimodular embedding problem.

I. INTRODUCTION

In the behavioral approach, a system is defined as a triple � =

(; q;), where is the time axis, q is the signal space, and the
behavior is the subspace of Lloc

1 (; q) (the space of all locally
integrable functions from to q) of all solutions of a set of higher
order, linear, constant coefficient differential equations. In particular,

= fw 2 Lloc
1 (; q)jR(d=dt)w = 0g. Here, R is a real polyno-

mial matrix with q columns, and R(d=dt)w = 0 is understood to hold
in the distributional sense. � is called a linear differential system. The
set of all linear differential systems with q variables is denoted by Lq .
Often, we speak about the system 2 Lq (instead of � 2 Lq). The
representation R(d=dt) = 0 of is called a kernel representation of

, and we often write = ker(R). The kernel representation is called
minimal if R has the minimal number of rows. This holds if and only
if the polynomial matrix R has full-row rank. This minimal number of
rows is denoted by p(), and is called the output cardinality of . It
corresponds to the number of outputs in any input/output representation
of . For a given 2 Lq we denote by cont the largest controllable
subbehavior of , (see [6]). This subbehavior of is called the con-
trollable part of . If = ker(R) is a minimal representation, then
any factorization of R as R = DR1 with D square and nonsingular
and R1(�) full-row rank for all �, yields cont = ker(R1).

A polynomial p is called is called Hurwitz if its zeroes are contained
in the open left half complex plane � := f� 2 jRe(�) < 0g. A
square polynomial matrix P is called Hurwitz if det(P) is Hurwitz.

Manuscript received December 13, 2005; revised January 13, 2007. Recom-
mended by Associate Editor M. Fujita.

H. L. Trentelman is with the Institute for Mathematics and Computing Sci-
ence, University of Groningen, 9700 AV Groningen, The Netherlands (e-mail:
h.l.trentelman@math.rug.nl).

R. Z. Yoe is with the Instituto Tecnologico y de Estudios Superiores de Mon-
terrey, Departamento de Ingenieria, Col. Ejidos de Tlalpan, CP. 14380, Mexico
DF, Mexico (e-mail: zavalay@itesm.mx).

C. Praagman is with the Institute of Economics and Econometrics, University
of Groningen, 9700 AV Groningen, The Netherlands (e-mail: c.praagman@eco.
rug.nl).

Digital Object Identifier 10.1109/TAC.2007.906455

0018-9286/$25.00 © 2007 IEEE

